报告题目:Group Connectivity, Spanning Trees, Realization of A-connected Sequences
报告人:罗荣教授西弗吉尼亚大学
邀请人:朱强副教授
报告时间:2016年6月6日下午2:40
报告地点:信远楼II206我院报告厅
报告人简介:
罗荣,美国西弗吉尼亚大学(WestVirginia University,USA)数学系教授、博士生导师,美国数学学会委员,曾任中西部图论会议、AMS东南会议图论会议、坎伯兰会议大会组委会委员,现任Journal of Proteomics & Bioinformatics,Open Journal of Discrete Mathematics,ISRN Discrete Mathematics等期刊编委。主要从事图论、组合、组合矩阵论、图论在化学和生物学中的应用等方面的研究。2007年-2008年在中田纳西州立大学荣获卓越出版奖;2006年-2007年在中田纳西州立大学荣获杰出科研奖励;2003年-2004年在中田纳西州立大学荣获杰出研究员奖。
报告摘要:Let A be an Abelian group. It is known that an A-connected graph cannot be very sparse. We study the extremal problem: find the maximum integer k, denoted ex(n, A), such that every graph with at most k edges is not A-connected. We determine the exact values for all finite cyclic groups. As a corollary, we present a characterization of all Z_k-connected graphic sequences.
It is also known that there are Z_5-connected graph that are not Z_6-connected. We prove that every Z_3-connected graph contains two edge-disjoint spanning trees, which implies that every Z_3-connected graph is also A-connected for any A with order at least 4.