学术报告

学术报告

您当前所在位置: 首页 > 学术报告 > 正文
报告时间 报告地点
报告人

报告题目: Dynamics of time-periodic reaction-diffusion equations with compact initial support on R

报告人:丁维维 副研究员 华南师范大学

邀请人:吴事良

报告时间:2020年6月1日(周一)下午16:00-17:00

腾讯会议ID: 489 400 498

报告人简介: 丁维维,华南师范大学副研究员,2015年4月博士毕业于中国科学技术大学和法国艾克斯-马赛大学,曾在澳大利亚新英格兰大学、日本东京大学和日本明治大学从事博士后研究。主要研究领域为非线性抛物型方程的动力学性质,以及其在生物问题上的应用。在J. Math. Pures Appl.,Ann. Inst.H.Poincaré Anal. Non Linéaire, SIAM J. Math. Anal, J. Differential Equations, Calc. Var. Partial Differential Equations等国际著名杂志上发表论文十余篇。

报告摘要:In this talk, I will discuss the asymptotic behavior of bounded solutions of one-dimensional time-periodic reaction-diffusion equations with compact initial support. In the autonomous case, the convergence of every bounded solution to an equilibrium has been established by Du and Matano (2010). However, the presence of periodic forcing makes the problem significantly more difficult. In this talk, I will show that under a mild nondegenerate assumption on time-periodic solutions of the corresponding ODE, every bounded solution converges to a time-periodic solution. I will also apply this result to equations with bistable nonlinearity and combustion nonlinearities and specify more precisely which time-periodic solutions can possibly be selected as the limit. This is a joint work with Hiroshi Matano (Tokyo).

主办单位:best365网页版登录官网

上一篇:Attractors for some reaction-diffusion equations

下一篇:正算子与二阶椭圆算子主特征值问题及其应用

关闭

Baidu
sogou