学术报告

学术报告

您当前所在位置: 首页 > 学术报告 > 正文
报告时间 报告地点
报告人

报告题目:Decomposition Methods for Large-Scale Optimization Problems and Their Applications

报 告 人:陈彩华 副教授 南京大学

照    片:

邀 请 人: 刘三阳

报告时间: 2020年8月28日10:00—11:00

报告地点: 腾讯会议:552 408 499

报告人简介:陈彩华,副教授,南京大学理学博士,新加坡国立大学联合培养博士,曾赴新加坡国立大学、香港中文大学、香港理工大学、香港浸会大学等学习与访问。主持/完成的基金包括国家自然科学基金面上项目、青年项目,江苏省自然科学基金面上项目、青年项目,参与国家自然科学基金重点项目,代表作发表在《Mathematical Programming》,《SIAM Journal on Optimization》,《SIAM Journal on Imaging Science》及CVPR等国际知名学术期刊与会议,其中多篇论文入选ESI高被引论文。获华人数学家联盟最佳论文奖(2017、2018连续两年),中国运筹学会青年科技奖(2018),南京大学青年五四奖章(2019),入选首批南京大学仲英青年学者(全校10人,2018)及江苏省社科优青(2019)。

报告摘要:We live in the age of big data and data of huge size is becoming ubiquitous. With thiscomesthe need to solve optimization problems of unprecedented size. Classicaloptimization algorithms are not designed to scale to instances of this size. Inthis talk, I introduce two typical decomposition methods — BCD and ADMM, for solving large scale optimization problems and present somenovel theoretical results on these two methods. Some interesting applications, including markov decision process and wassernstein distributionally robust optimization are also discussed.

上一篇:Deep CT Imaging by Unrolled Dynamics

下一篇:Decomposition Multiobjective Optimization and Pareto Multitask Learning

关闭

Baidu
sogou