学术报告

学术报告

您当前所在位置: 首页 > 学术报告 > 正文
报告时间 2023年4月23日上午8:30—10:00 报告地点 南校区会议中心121会议室
报告人 陈占寿

报告题目:Detecting structural change point in ARMA models via neural network regression

报告人:陈占寿 教授 青海师范大学

陈占寿_百度百科

邀请人:李本崇

报告时间:2023年4月23日上午8:30—10:00

报告地点:南校区会议中心121会议室

报告人简介:陈占寿,男,汉族,1982年出生,青海师范大学best365网页版登录官网副院长,教授,博导,青海省统计学会副会长,中组部“西部之光”访问学者,加拿大英属哥伦比亚大学访问学者,青海省拔尖人才,青海省高校“135高层次人才培养工程”拔尖学科带头人,青海省自然科学与工程技术学科带头人,青海省昆仑英才教学名师;主要从事时间序列变点分析,小区域估计等方面的研究工作,先后主持国家自然科学基金3项,青海省自然科学基金5项;发表科研论文60余篇,出版学术专著一部,获青海省自然科学优秀论文三等奖2项。

报告摘要:This study considers the change point testing problem in autoregressive moving average (ARMA) (p, q) models through the location and scale-based cumulative sum (LSCUSUM) method combined with neural network regression (NNR). We estimate the model parameters via the NNR method based on the training sample, where a long AR model is fitted to obtain the residuals. Then, we select the optimal model orders p and q of ARMA models using the Akaike information criterion based on a validation set. Finally, we use the forecasting errors obtained from the selected model to construct the LSCUSUM test. Extensive simulations and its application to three real datasets show that the proposed NNR-based LSCUSUM test performs well.

主办单位:best365网页版登录官网

上一篇:面向层次结构数据的学习初探

下一篇:Managerial Behavior in Revenue Management

关闭

Baidu
sogou