学术报告

学术报告

您当前所在位置: 首页 > 学术报告 > 正文
报告时间 报告地点
报告人

威斯康星大学张春明教授系列学术报告2

报告题目:Large-Scale Multiple Testing under Dependence via Graphical Models

报 告 人:Chunming Zhang, Professor of Statistics, University of Wisconsin-Madison

照片:

邀 请 人:冶 继 民 教 授

报告时间:2020年6月11号上午9:00:-10:30

报告平台:Zoom ID:895 4593 9701(密码4SM80j)

报告人简介:张春明,美国威斯康星大学国际著名统计学教授,统计学四大顶级期刊之一Annals of Statistics的前副主编、Journal of the American Statistical Association的现任副主编。在统计学四大顶级期刊发表论文10余篇,主要研究领域有:Statistical learning & data mining;Statistical methods with applications to imaging neuroinformatics and bioinformatics;Multiple testing; large-scale simultaneous inference and applications;Statistical methods in financial econometrics;Non- and semi-parametric estimation & inference;Functional & longitudinal data analysis.

报告摘要:Large-scale multiple testing tasks in applications often exhibit dependence, and leveraging the dependence among individual tests is an important but challenging problem in statistics. In this talk, I will present some recent work on multiple testing procedures under dependence via graphical models with applications to a genome-wide association study (GWAS).

 

上一篇:重叠网络上疾病与信息传播动力学分析

下一篇:On simultaneous calibration of two-sample t-tests for high-dimension low-sample-size data

关闭

Baidu
sogou