学术报告

学术报告

您当前所在位置: 首页 > 学术报告 > 正文
报告时间 2022年11月29日(周二)上午9:00-12:00 报告地点 腾讯会议ID:221 137 414
报告人 李丽敏

报告题目:Co-regularized variational autoencoders for Drug-target binding affinity prediction

报告人:李丽敏 教授西安交通大学

邀请人:张胜利 白振国

报告时间:2022年11月29日(周二)上午9:00-12:00

腾讯会议ID221 137 414

报告人简介:李丽敏,西安交通大学best365网页版登录官网教授,博士生导师。本科和硕士毕业于浙江大学,博士毕业于香港大学。主要研究机器学习和统计方法及其在生物信息中应用,包括药物靶蛋白识别,癌症子型识别,跨物种预测等。近年来在相关领域发表多篇论文,包括TPAMI, Briefings in Bioinformatics, SIAM Journal on Scientific Computing, TCBB等。主持国家自然科学基金委面上项目和优秀青年科学基金项目。

报告摘要:Drug-target binding affinity has been a key step in drug discovery. In this talk, I will present our co-regularized variational autoencoders (Co-VAE) for predicting drug-target binding affinity based on drug structures and target sequences. The Co-VAE model consists of two VAEs for generating drug SMILES strings and target sequences, respectively, and a co-regularization part for generating the binding affinities. We theoretically prove that the Co-VAE model is to maximize the lower bound of the joint likelihood of drug, protein and their affinity. The Co-VAE could predict drug-target affinity and generate new drugs which share similar targets with the input drugs.

上一篇:A Novel Surrogate-Function-Based Paradigm for Large-Scale Convex Composite Optimization

下一篇:Dynamics of a Lotka-Volterra weak competition model with time delays and free boundaries

关闭

Baidu
sogou